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1. Introduction 

(I) 
A. Piwinski has shown that there is an invariant that is 

useful in understanding the effects of intra-beam scattering on 

betatron oscillations and the energy spread. After some 

mathematical manipulations, the invariant can be written as 

+(+a- 4< (y,‘) + ;a <Gr) + -& <Cy) = cov\st (1 - 1) 
where p,Ap are the momentum and momentum deviation,KhandlCh/ 

are the betatron emittances for horizontal and vertical 

directions, respectively, & and py are the horizontal and 

vertical betatron amplitude functions, r is the particle energy 

in units of its rest energy, d is the momentum compaction 

factor (tv//&Lwhich is considered by Piwinski as a god 

approximation), 1 is the momentum dispersion function, (A> 

is the mean value of a quantity A over all particles, s is the 

mean value of a quantity A in the orbit , and the integer n is 2 

for an unbunched beam. 
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If we asume that betatron oscillations and energy oscillations are 

harmonic oscillators and that intra-beam scattering is a local 

elastic collision, we can derive the expression for this invariant 

more easily with the aid of the energy conservation law. 

2. System of N three-dimensional harmonic oscillators 

According to the above assumption, we can regard a beam as an 

isolated By-of N three-dimensional harmonic oscillators which 

experience many random collisions among themselves. Here the 

longitudinal oscillation is taken as a free motion because we 

consider the case of an unbunched beam. 

Consider the behavior of-pm before and after a 

collision. Its behavior can be described by the Hamiltonian 

H cw+;Y,Py;ci;B) =~(P=+x’)+~~p,‘+y’)-;cxs + gg* (2 - 1) 

where &,Qy,& are the horizontal and vertical betatron tunes ,and 

longitudinal frequency, xPx;Y,py; +.s are the canonical 

variables for horizontal, vertical ,and longitudinal 

motions ( S 1&p/p), X. is a coupling coefficient, 

and 8 = s/R where R is the mean machine radius and s is the 

distance along the orbit. 

We can separate the horizontal excursion of Eq. (2-l) into two 

parts, the equilibrium orbit and the homogeneous harmonic 

oscillation around the equilibrium orbit. This homogeneous 

harmonic oscillation corresponds to a pure betatron oscillation 

and the equilibrium orbit corresponds to the well-known closed 
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orbit which varies linearly with 6 , the longitudinal momentum 

deviation. The equation of motion obtained from the Hamiltonian 

(2-l) is then 

. . 
X = 4% + X&S ( '& (2 - 2) 

Therefore, the equilibrium orbit ( Xq,Pc$ ) is written as 

Xq= Dr t D &A) 

Pv= 0 (2 - 3) 

Transforming into a new canonical variable ( %,px), 

x = x-xg 

FL = Pi - Pet 

we find, from the generating function, 

geLP,; 01 = (2 - 4) 

the new Hamiltonian 

K=H+g 

=$[ p*‘+ (x+D8r]-~c(X+ Ds)s+ +$++Lf;+y’] 

=$[PL+ x’] +$cfq+yz] ++($s-Jr~)$~ (2 - 5) 

In terms of action-angle variables, we can write the Hamiltdnian 

in the form 

4= arJ-J;r + +3u + -~XD% (2 - 6) 

Next, consider the behavior of the -before and after a 

collision. This behavior is described by the Hamiltonian HtcmI 

%t4l = .& [ &J* + &Jr + 4 ( ~s-wan]I (2 - 7) 
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Since we have assumed that the Coulomb interaction between 

paticles is a local elastic collision, the Hamiltonian Htm\ must 

be an invariant of the motion. We therefore obtain easily the 

invariant expression 

%I<&> + 3,C&> -t ; ( \Is- 3,~~)~&)=to~s~ (2 - 8) 

where < A ) is the mean value of A over all particles. 

Finally, we can rewrite this expression in terms of betatron 

parameters. Relations between the parameters used above and the 

orbit parameters of a real machine are 
0) 

D ='i'C9@% because TxCs)=&$X ~Sp=&i$X~3qy~)=@~~ 

where x(s) ,x+ are the horizontal excursion and 

the equilibrium orbit in a real ring, 

q&is the momentum dispersion function. 

&Y = W& (smooth approximation) 

9s = R/P because in the rest frame(independent variable:s) 

the momentum deviation takes the term 4f r(See Appendix) 

and in the 6 frame(independent variable:0 ) 

the longitudinal energy must be multiplied by R. 

Thus Eq.(2-8) becomes 

<J;)..~, + R 

"sin: t!e 

<Jy) 
6 

(2 - 9) 

approximate expression for the momentum compaction 

factor“' 
= 7%) d - 

i9-j 
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we obtain, from Eq.(2-9), 

~Jz> + 
7 

( 7))) 
x- 

-d)<&)=mSf (2 - lo) 

which is identical with the original form, Eq.(l-l), derived by 

Piwinski. 

3. Conclusion 

Although particles in the beam undergo many collisions, the 

invariant Eq.(2-10) is valid if the interaction is elastic and 

this is simply a consequence of the conservation of energy. 
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K is the laboratory system'and K’ is the system at rest with 

the synchronous particle which has the velocity~ v,(=cpO) in K. 

The space-time coordinates of a test particle are (x,y,z,ict) in K 

and (x',y',i!,ict!) in K! The four momenta (p,,,~,pa,iE/c) in K are 

tM.tix ?J+bh 
&=s 9”-, P,=w , F-g: (A-1) 

with p = v/c (; is the velocity in K) and VI h v. Similar 

relations hold for the four-momenta (&$,l$iE'/c) measured in K< 

In K the longitudinal momentum deviation from the design 

value is 

(APL) E Ps - fko 

-- (A - 2) 

Transformed into K: the momentum piis written in the form 

Therefore the in K'is written as 

(4%) = wb= , P-P. 
Gye /-a’ 

We define a small parameter E , 

(A - 3) 

e = (3-po (A - 4) 
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We expand the right-hand sides of Eq.(A-2) and (A-3) in e and 

retain only the lowest order terms. We then get the expressions 

for the longitudinal momentum deviation 

so that 

(AP,) = %” 
Cl- P.9 

(A&)/ = c;“;tl ’ 
. 

(A p,,’ = (?$ 

(A - 5) 

(A - 6) 

(A - 7) 


